1996.1.superyu
1. Find the solution satisfying the given condition (10%)
y =
1
x2 y2 .
1
x
y + 1 ; y(1) = 3
j. . Ñ Riccati j˙ , .øøÔjÑ yp = x, ]I y =
1
v
+ x, + y = .
v
v2 + 1, H
. ODE 2ª)
v +
1
x
v = .
1
x2
}ÄäÑ
I = e 1
x dx = eln x = x
]
Iv = x(.
1
x2 )dx = .ln |x| + c
1
v =
c . ln |x|
x
Ĥ
y(x) =
1
v
+ x =
x
c . ln |x|
+ x
â y(1) = 3, ª) 3 =
1
c
+ 1, ] c =
1
2
, 1
y(x) =
x
1
2 . ln |x|
+ x
2. Given that x and xex are solutions of the homogeneous equation corresponding to
x2y . x(x + 2)y + (x + 2)y = 2x3 (x > 0)
Find the general solution by using the Method of Variation of Parameter. (10%)
2
j. I y1 = x, y2 = xex, yI yp = y1φ1 + y2φ2, Ä
W(y1 , y2) =
x xex
1 ex + xex
= x2ex
]
φ 1 = .
2xy2
W(y1 , y2)
= .
2x2ex
x2ex = .2
+ φ1 = .2x, /
φ 2 =
2xy1
W(y1 , y2)
=
2x2
x2ex = 2e.x
+ φ2 = .2e.x, ]
yp = y1φ1 + y2φ2 = .2x2 . 2x
Ĥ
y(x) = c1x + c2xex . 2x2 . 2x
3. Let field .→G(x, y, z) = .→a x(x . yz) + .→a y(y2 . zx) + .→a z(z2 . xy). (10%)
(1) Find the line integral C1
.→G(x, y, x) · d.→ , where C1 is a segment of the curve
y = x2, z = x from (0,0,0) to (1,1,1).
(2) Compute the sum of line integrals C2
.→G(x, y, x) · d.→ + C3
.→G(x, y, z) · d.→
where C2 is the straight line from (1,1,1) to (0,0,0) and C3 is along the z.axis
from (0,0,1) to (0,0,0).
j.
(1)
C1
.→G · d.→ = C1
[(x . yz)dx + (y2 . zx)dy + (z2 . xy)dz]
= 1
x=0
[(x . x2 · x)dx + (x4 . x2)(2xdx) + (x2 . x3)dx]
=
1
6
(2) Ä ▽×.→G = 0, / .→G ƒb£ø¼Rûbc/, ]
C2
.→G · d.→ + C3
.→G · d.→ = . C1
.→G · d.→ = .
1
6
3
4. Evaluate the integrals along the path C that is the counterclockwise circle with
|z| = 3.
(a) C
z2 . 1
z2 + 1
ezdz (b) C
sinh 3z
(z2 + 1)2 dz (10%)
j.
(a) I f(z) = (
z2 . 1
z2 + 1
)ez, ] f(z) x z = ±i íø¼ poles, /
Resf(i) = (
z2 . 1
2z
ez)
z=i
= iei , Resf(.i) = (
z2 . 1
2z
ez) z=.i
= .iei
]
C
f(z)dz = 2πi[Resf(i) + Resf(.i)] = 2πi[iei . ie.i] = .2πi sin(1)
(b) I f(z) =
sinh 3z
(z2 + 1)2 , ] f(z) x z = ±i íù¼ poles, /
Resf(i) = lim
z→i
d
dz
[(z . i)2 sinh 3z
(z2 + 1)2 ]
= lim
z→i
d
dz
[
sinh 3z
(z + i)2 ]
= lim
z→i
3 cosh3z · (z + i)2 . sinh 3z · 2(z + i)
(z + i)4
=
3 cosh(3i)(2i)2 . sinh (3i) · 2(2i)
(2i)4
= .3 cos 3+sin3
4
°Ü
Resf(.i) = lim
z→.i
d
dz
[
sinh 3z
(z . i)2] = .3 cos 3+sin3
4
]
C
f(z)dz = 2πi[Resf(i) + Resf(.i)] = πi(sin 3 . 3 cos 3)
4
5. The Fourier transform of x(t) is defined as (15%)
X(jw) = ∞
.∞
x(t)e.jwtdt
Suppose
x(t) = 1 |t| <
1
2
0 otherwise
(a) Find X(jπ)
(b) Calculate the following convolution integral
∞
.∞
sin(πτ) sin[2π(t . τ )]
π2τ (t . τ )
dτ
j.
(a)
X(jw) = ∞
.∞
x(t)e.jwtdt = 2
1
2
0
cos wt dt =
2
w
sin
w
2
] X(jπ) =
2
π
sin
π
2
=
2
π
(b) âú.4”ªø
F{
sin
t
2
t
2
} = 2πx(w)
yâ ìܪø
F{
sin(πt)
πt } =
2π
2π
x(
w
2π
) = x(
w
2π
) = 1 |w| < π
0 otherwise
F{
sin(2πt)
2πt } =
2π
4π
x(
w
4π
) =
1
2
x(
w
4π
) = 1
2 |w| < 2π
0 otherwise
]
F{ ∞
.∞
sin(πτ) sin[2π(t . τ )]
π2τ (t . τ )
dτ} = F{2
sin πt
πt .
sin(2πt)
2πt }
= 2x(
w
2π
)
1
2
x(
w
4π
)
5
= 1 |w| < π
0 otherwise
= G(w)
]
∞
.∞
sin(πτ) sin[2π(t . τ )]
π2τ (t . τ )
dτ = F.1{G(w)}
=
1
2π ∞
.∞
G(w)ejwt dw
=
1
2π π
.π
ejwtdw
=
1
π π
0
cos wt dw
=
sin πt
πt
6. Solve the initial value problem (10%)
y + 9y = f(t) ; y(0) = y (0) = 1
f(t) = 0 if0. t < π
cos t if t . π
j. Ä
f(t) = 0 if0. t < π
cos t if t . π
= cost u(t . π)
/
L{f(t)} = e.πsL{cos(t + π)} = .
s
s2 + 1
e.πs
ú ODE s.| L–T ª)
s2ˆy(s) . sy(0) . y (0) + 9ˆy(s) = L{f(t)} = .
s
s2 + 1
e.πs
w2 L{y(t)} = ˆy(s), cܪ)
ˆy(s) =
s + 1
s2 + 9 .
s
(s2 + 1)(s2 + 9
e.πs
=
s + 1
s2 + 9
+
1
8
(
s
s2 + 9 .
s
s2 + 1
)e.πs
6
]
y(t) = L.1{ˆy(s)} = cos3t +
1
3
sin 3t +
1
8
[cos 3(t . π) . cos(t . π)]u(t . π)
7. Find A100, if
(a) A = ..
3 1 1
2 4 2
.1 .1 1
..
. (10%)
(b) A50 = ..
3 1 1
2 4 2
.1 .1 1
..
. (5%)
j.
(a) â det (A . λI) = 0 ª)Ô MÑ λ = 4 2 2 , / rank (A . 2I) = 1, ] A í|
üÖá Ñ
f(x) = (x . 4)(x . 2)
1 f(A) = (A . 4I)(A . 2I) = A2 . 6A + 8I = 0, I
g(x) = x100 = Q(x)f(x) + ax + b = Q(x)(x . 4)(x . 2) + ax + b
Ä
4100 = 4a + b
2100 = 2a + b . a =
1
2
(4100 . 2100) , b = (2 · 2100 . 4100)
]
g(A) = A100 = aA + bI =
1
2
(4100 . 2100)A + (2 · 2100 . 4100)I
(b) I B = A50, / B Å— B2 . 6B + 8I = 0, ]
A100 = B2 = 6B . 8I = ..
10 6 6
12 16 12
.6 .6 .2
..
7
8. By employing the power series method for the equation of
.x2y + y + xy . y = 0
the solution can be expressed as the form of
y = a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5 + · · · a0 = 0
Please calculate the value of
a4a5
a3 + a4 + a5
. (10%)
j. Ä x = 0 Ñ O.D.E. í õ, ]I
y =
∞
n=0
y(n)
n!
xn = a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5 + · · ·
+ y(0) = a0, y (0) = a1, â
(1 . x2)y (x) = .xy(x) + y(x)
] y (0) = y(0) = a0 = a22!, , s. }ª)
(1 . x2)y (x) . 2xy (x) = .xy (x) . y (x) + y (x) . (1 . x2)y (x) = xy (x)
] y (0) = 0 = a33!, , s. }ª)
(1 . x2)y(4)(x) . 2xy (x) = xy (x) + y (x)
] y(4)(0) = y (0) = a0 = a44!, , s. }ª)
(1 . x2)y(5)(x) . 2xy(4)(x) = 3xy(4)(x) + 3y (x) + y (x)
] y(5)(0) = 0 = a55!, Ĥ
a4a5
a3 + a4 + a5
= 0 (∵ a5 = 0)
9. (μ2æ) The steady-state temperature u(x, y) in s semi-infinity plate (x > 0,
y > 0) is determined from the boundary conditions of u(0, y) = e.y, u(x, 0) = e.x.
Find P, and Q and S of the solution u(x, y) =
2
π ∞
0
α
P
(Qsin αy + S sin αx)dα
(A) P = 1+α2, (B)Q = e.αx, (C)S = e.αx, (D)Q = e.αy,
(E) P = 1+α. (10%)
8
j. I u = u1 + u2, /
▽u1 =
∂2u1
∂x2 +
∂2u1
∂y2 = 0 u1(0, y) = 0 , u1(x, 0) = e.x (x > 0 , y>0) (1)
▽u2 =
∂2u2
∂x2 +
∂2u2
∂y2 = 0 u2(0, y) = e.y , u2(x, 0) = 0 (x > 0 , y >0) (2)
ú (1) | Fourier sine 2ª)
.α2U1 + αu1(0, y) +
d2U1
dy2 = 0
w2 Fs{u1} = U1(α , y), cܪ)
d2U1
dy2 . α2U1 = 0
j, ª)
U1(α , y) = c1e.αy + c2eαy
â lim
y→∞
U1(α , y) = bounded, ª) c2 = 0, ]
U1(α , 0) = Fs{u(x, 0)} = ∞
0
e.x sin αx dx =
α
1 + α2 = c1
]
U1(α , y) =
α
1 + α2 e.αy
Ĥ
u1(x, y) = F.1
s {U1(α , y)} =
2
π ∞
0
α
1 + α2 e.αy sin αx dα
°Ü
u2(x, y) =
2
π ∞
0
α
1 + α2 e.αx sin αy dα
]
u(x, y) = u1(x, y) + u2(x, y) =
2
π ∞
0
α
1 + α2 (e.αy sin αx + e.αx sin αy)dα
2 (A) £ (B)
沒有留言:
張貼留言